Skip to main content
Log in

PIG3V, an immortalized human vitiligo melanocyte cell line, expresses dilated endoplasmic reticulum

  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Vitiligo is an enigmatic pigmentary disorder of the skin. Factors potentially involved in the progressive loss of melanocytes from the basal layer of the epidermis include genetically determined aberrancies of the vitiligo melanocyte. It follows that analysis of melanocytes cultured from vitiligo donors can contribute to a further understanding of the etiopathomechanism. A setback for vitiligo research has been the limited availability of vitiligo-derived melanocytes. To overcome this limitation, we have generated a vitiligo melanocyte cell line according to a protocol established previously for the immortalization of normal human melanocytes. Vitiligo melanocytes Ma9308P4 were transfected with HPV16 E6 and E7 genes using the retroviral construct LXSN16E6E7. Successful transformants were selected using geneticin and subsequently cloned to ensure genetic homogeneity. The resulting cell line PIG3V has undergone more than 100 cell population doublings ince its establishment as a confluent primary culture, whereas untransfected melanocytes derived from adult skin senesce after a maximum of 50 population doublings. Cells immortalized by this transfection procedure retain lineage-specific characteristics and proliferate significantly faster than parental cells. In this study, the phenotype of PIG3V resembled melanocytes rather than melanoma cells in culture. Tyrosinase was processed properly and melanosomes remained pigmented. Importantly, ultrastructural characterization of PIG3V cells revealed dilated endoplasmic reticulum profiles characteristic of vitiligo melanocytes. An explanation for this dilation may be found in the retention of proteins with molecular weight of 37.5, 47.5, and 56.5 kDa, as determined by gel electrophoresis of microsomal proteins isolated from radiolabeled cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boissy, R. E.; Liu, Y. Y.; Medrano, E. E.; Nordlund, J. J. Structural aberration of the rough endoplasmic reticulum and melanosome compartmentalization in long-term cultures from vitiligo patients. J. Investig. Dermatol. 97:395–404; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Boissy, R. E.; Zhao, Y.; Gahl, W. A. Altered protein localization in melanocytes from Hermansky-Pudlak syndrome: support for the role of the HPS gene product in intracellular trafficking. Lab. Invest. 78:1037–1048; 1998.

    PubMed  CAS  Google Scholar 

  • Galardi, E.; Mehrigan, A. H.; Hashimoto, K. Ultrastructural study of vitiligo. Int. J. Dermatol. 32:269–271; 1993.

    Google Scholar 

  • Halaban, R.; Alfano, F. D. Selective elimination of fibroblasts from cultures of normal human melanocytes. In Vitro 20:447–450; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Halbert, C. L.; Demers, G. W.; Galloway, D. A. The E7 gene of human papillomavirus type 16 is sufficient for immortalization of primary human epithelial cells. J. Virol. 65:473–478; 1991.

    PubMed  CAS  Google Scholar 

  • Hawley-Nelson, P.; Vousden, K. H.; Hubbert, N. L., et al. HPV16 E6 and E7 proteins cooperate to immortalize human foreski keratinocytes. EMBO J. 8:3905–3910; 1989.

    PubMed  CAS  Google Scholar 

  • Im, S.; Hann, S. K.; Kim, H. I., et al. Biologic characteristics of cultured human vitiligo melanocytes. Int. J. Dermatol. 33:556–562; 1994.

    PubMed  CAS  Google Scholar 

  • Jimbow, K.; Chen, H.; Park, J. Molecular mechanisms for TRP-1 involvement in vitiligo/leukoderma [abstract]. Pigment Cell Res. S5:234; 1996.

    Google Scholar 

  • Jones, H. W. Record of the first physician to see Henrietta Lacks at the Johns Hopkins Hospital: history of the beginning of the HeLa cell line. Am. J. Obstet. Gynecol. 176:S227-S228; 1997.

    Article  PubMed  Google Scholar 

  • Karnovsky, M. J. A formaldehyde-glutaraldehyde fixative of high osmolaity for use in electron microscopy [abstract]. J. Cell. Biol. 27:137; 1965.

    Google Scholar 

  • Karnovsky, M. J. Use of ferrocyanide-reduced osmium tetroxide in electron microscopy [abstract]. J. Cell. Biol. 51:146; 1971.

    Google Scholar 

  • Katano, M.; Saxton, R. E.; Cochran, A. J.; Irie, R. F. Establishment of an ascitic human melanoma cell line that metastasizes to lung and liver in nude mice. J. Cancer Res. Clin. Oncol. 108:197–203; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Kim, P.S.; Arvan, P. Endocrinopathies in the family of endoplasmic reticulum storage diseases: disorders of protein trafficking and the role of ER molecular chaperones. Endocr. Rev. 19:173–202; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Kiyono, T.; Foster, S. A.; Koop, J. I., et al. Both Rb/p16INK4A inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396:84–88; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Kovasc, S. O. Vitiligo. J. Am. Acad. Dermatol. 38:647–666; 1998.

    Article  Google Scholar 

  • Le Poole, I. C.; Boissy, R. E. Vitiligo. Semin. Cutan. Med. Surg. 16:3–14; 1997.

    Article  PubMed  Google Scholar 

  • Le Poole, I. C.; van den Berg, F. M.; van den Wijngaard, R. M. J. G. J., et al. Generation of a human melanocyte cell line by introduction of HPV16 E6 and E7 genes. In Vitro 33:42–49; 1997.

    Google Scholar 

  • Le Poole, I. C.; van den Wijngaard, R. M. J. G. J.; Westerhof, W., et al. Presence or absence of melanocytes from vitiligo lesions: an immunohistochemical investigation. J. Investig. Dermatol. 100:816–822; 1993.

    Article  PubMed  Google Scholar 

  • Majumder, P.; Nordlund, J. J.; Nath, S. K. Pattern of familial aggregation of vitiligo. Arch. Dermatol. 129:994–998; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Marquardt, T.; Helenius, A. Mistolding and aggregation of newly synthesized proteins in the endoplasmic reticulum. 117:505–513; 1992.

    CAS  Google Scholar 

  • McKeehan, W. L.; Barnes, D.; Reid, L., et al. Frontiers in mammalian cell culture. In Vitro Cell. Dev. Biol. 26:9–23; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Melbije, M.; Frisch, M. The role of pappilomaviruses in anogenital cancers. Semin. Cancer Biol. 8:307–313; 1998.

    Article  Google Scholar 

  • Moellmann, G.; Klein-Angerer, S.; Scollay, D. A., et al. Extracellular granular material and degeneration of keratinocytes in the normally pigmented epidermis of patients with vitiligo. J. Investig. Dermatol. 79:321–330; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Munger, K.; Scheffner, M.; Huibregtse, J. M.; Howley, P. M. Interactions of HPV16 E6 and E7 oncoproteins with tumour suppressor gene products. Cancer Surv. 12:197–217; 1992.

    PubMed  CAS  Google Scholar 

  • Nath, S. K.; Majumder, P. P.; Nordlund, J. J. Genetic epidemiology of vitiligo: multilocus recessivity cross-validated. Am. J. Hum. Genet. 55:981–990; 1994.

    PubMed  CAS  Google Scholar 

  • Nicchitta, C. V.: Migliaccio, C.; Blobel, G. Biochemical assembly of the membrane components that mediate chain targeting and translocation. Cell 65:587–598; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Nordlund, J. J. The epidemiology and genetics of vitiligo. Clin. Dermatol. 15:875–878; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Puri, N.; Mojamdar, M.; Ramaiah, A. In vitro growth characteristics of melanocytes obtained from adult normal and vitiligo subjects. J. Investig. Dermatol. 88:434–438; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Ramaiah, A.; Mojamdar, M.; Amarnath, V. M. Vitiligo in the SSK community of Bangalore. Indian J. Dermatol. Venereol. Leprol. 54:251–254; 1988.

    Google Scholar 

  • Tomita, Y.; Yamamoto, H.; Sato, C., et al. Efficient culturing of human melanocytes from suction blishters. Tokohu J. Exp. Med. 147:219–320; 1985.

    Article  CAS  Google Scholar 

  • Xu, A.; Bellamy, A. R.; Taylor, J. A. BiP (GRP78) and endoplasmin (GRP94) are induced following rotavirus infection and bind transiently to an endoplasmic reticulum-localized virion compartment. J. Virol. 72:9865–9872; 1998.

    PubMed  CAS  Google Scholar 

  • Zhang, J. X.; Braakman, I.; Matlack, K. E.; Helenius, A. Quality control in the secretory pathway: the role of calreticulin, calnexin and BiP in the retention of glycoproteins with C-terminal truncations. Mol. Biol. Cell 8:1943–1954; 1997.

    PubMed  CAS  Google Scholar 

  • Zhao, H.; Boissy, Y. L.; Abdel-Malek, Z.; King, R. A.; Nordlund, J. J.; Boissy, R. E. On the analysis of the pathophysiology of Chediak-Higashi syndrome. Defects expressed by cultured melanocytes. Lab. Invest. 71:25–34; 1994.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Poole, I.C., Boissy, R.E., Sarangarajan, R. et al. PIG3V, an immortalized human vitiligo melanocyte cell line, expresses dilated endoplasmic reticulum. In Vitro Cell.Dev.Biol.-Animal 36, 309–319 (2000). https://doi.org/10.1290/1071-2690(2000)036<0309:PAIHVM>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2000)036<0309:PAIHVM>2.0.CO;2

Key words

Navigation